Performances of one-dimensional sonomyography and surface electromyography in tracking guided patterns of wrist extension.
نویسندگان
چکیده
Electromyography (EMG) and ultrasonography have been widely used for skeletal muscle assessment. Recently, it has been demonstrated that the muscle thickness change collected by ultrasound during contraction, namely sonomyography (SMG), can also be used for assessment of muscles and has the potential for prosthetic control. In this study, the performances of one-dimensional sonomyography (1D SMG) and surface EMG (SEMG) signal in tracking the guided patterns of wrist extension were evaluated and compared, and the potential of 1D SMG for skeletal muscle assessment and prosthetic control was investigated. Sixteen adult normal subjects including eight males and eight females participated in the experiment. The subject was instructed to perform the wrist extension under the guidance of displayed sinusoidal, square and triangular waveforms at movement rates of 20, 30, 50 cycles per min. SMG and SEMG root mean squares (RMS) were collected from the extensor carpi radialis, respectively, and their RMS errors in relation to the guiding signals were calculated and compared. It was found that the mean RMS tracking errors of SMG under different movement rates were 18.9% +/- 2.6% (mean+/-SD), 18.3% +/- 4.5%, and 17.0% +/- 3.4% for sinusoidal, square and triangular guiding waveforms, while the corresponding values for SEMG were 30.3% +/- 0.4%, 29.0% +/- 2.7% and 24.7% +/- 0.7%, respectively. Paired t test showed that the RMS errors of SMG tracking were significantly smaller than those of SEMG. Significant differences in RMS tracking errors of SMG among the three movement rates (p<0.01) for all the guiding waveforms were also observed using one-way analysis of variance (ANOVA). The results suggest that SMG signal, based on further improvement, has great potential to be an alternative method to SEMG to evaluate muscle function and control prostheses.
منابع مشابه
Dynamic monitoring of forearm muscles using one-dimensional sonomyography system.
We introduce a method, known as one-dimensional sonomyography (1-D SMG), that uses A-mode ultrasound signals to detect dynamic thickness changes in skeletal muscle during contraction. We custom-designed a 1-D SMG system to collect synchronized A-mode ultrasound, joint angle, and surface electromyography (EMG) signals of forearm muscles during wrist extension. We extracted the 1-D SMG signal fro...
متن کاملJRRD At A Glance for Volume 47, Number 2, 2010
In this study, the thickness deformation of the forearm extensor muscle was taken from ultrasound images during wrist extension-flexion; we call this process sonomyography (SMG). SMG provides an alternative signal source for prosthetic control with proprioception. The fast block-matching algorithm was used to track the thickness deformation and then the opening and closing of the prosthetic fin...
متن کاملSynergy matrices to estimate fluid wrist movements by surface electromyography.
Although many efforts have been undertaken to develop an interface using surface electromyography (sEMG) to connect the gap between a human and a wrist prosthesis, most of these efforts have offered only static positioning (ON/OFF) of the prosthesis. This study introduced synergy matrices to extract fluid wrist movement intents by sEMG to allow individuals with wrist amputations to use wrist pr...
متن کاملGenerating the Visual Biofeedback Signals Applicable to Reduction of Wrist Spasticity: A Pilot Study on Stroke Patients
Introduction: Application of biofeedback techniques in rehabilitation has turned into an exciting research area during the recent decade. Providing an appropriate visual or auditory biofeedback signal is the most critical requirement of a biofeedback technique. In this regard, changes in Surface Electromyography (SEMG) signals during wrist movement can be used to generate an indictable visual b...
متن کاملSonomyography: monitoring morphological changes of forearm muscles in actions with the feasibility for the control of powered prosthesis.
Electromyography (EMG) has been widely used for the assessment of musculoskeletal functions and the control of electrical prostheses, which make use of the EMG signal generated by the contraction of the residual muscles. In spite of the successful applications of EMG in different fields, it has some inherent limitations, such as the difficulty to differentiate the actions of neighboring muscles...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ultrasound in medicine & biology
دوره 35 6 شماره
صفحات -
تاریخ انتشار 2009